InterviewSolution
Saved Bookmarks
| 1. |
The solution of the differential equation `(dy)/(dx) + y = 1 ( y != x)` isA. `y=ce^(x)`B. `y = ce^(-x)`C. `y = 1+ce^(x)`D. `y = 1+ce^(-x)` |
|
Answer» Correct Answer - a The given equation is `(dy)/(dx) +y =1` ` rArr (dy)/(dx) = 1-y rArr (dy)/(1-y) = dx` On integrating both sides , we get ` int (dy)/(1-y) = int dx` ` rArr log.((1-y))/-1 = x+c_(1)` , ` rArr (1-y) = e^(-xc_(1))` `rArr 1-y = e^(-x) .e^(-c_(1))` `rArr y = 1 +ce^(-x), "where" c = e^(-c_(1))` |
|