InterviewSolution
Saved Bookmarks
| 1. |
The solution of the differential equation `y dx - (x + 2y^2)dy=0` is `x=f(y)`. If `f(-1)=1,` then `f(1)` is equal toA. 4B. 3C. 1D. 2 |
|
Answer» Correct Answer - b Given, `y dx = (x - 2y^(2)) dy = 0 ` ` rArr ( y dx - x dx)/(y^(2)) = 2dy rArr d ( x/y) = 2dy ` On integrating both sides , we get ` rArr int d(x/y) = 2 int dy ` ` rArr x/y = 2y +C` At x = 1 , y = -1 ` :. C = 1 ` Now, ` x/y = 2y +1` When y = 1 , then f(1) = 3 |
|