InterviewSolution
Saved Bookmarks
| 1. |
The solution of the differential eqution `(d^(2)y)/(dx^(2)) = e^(-2x)` is ` y = c_(1)e^(-2x) +c_(2)x + c_(3)` where `c_(1)` isA. 1B. `1/4`C. `1/2`D. 2 |
|
Answer» Correct Answer - b Given , ` (d^(2)y)/(dx^(2)) = e^(-2x)` ` rArr (dy)/(dx) = (e^(-2x))/(2) +c_(2)` [ integrating ] `rArr y = (e^(-2x))/4 + c_(2)x + c_(3)` [ integrating] But ` y = c(1)e^(-2x) + c_(2) x + c_(3) ` [given ] ` :. C_(1) = 1/4 ` |
|