InterviewSolution
Saved Bookmarks
| 1. |
The speed at which the image of the luminous point object is moving, if the luminous point object is moving at speed ` v_(0)` towards a spherical mirror, along its axis is (Given, `R=` radius of curvature `u=` object distance)A. `v_(l)=-v_(o)`B. `v_(l)=-v_(o)[R/(2u-R)]^(2)`C. `v_(l)=-v_(o)((2u-R)/R)`D. `v_(l)=-v_(o)(R/(2u-R))` |
|
Answer» (c) `1/v+1/u=1/f` Differentiating both sides `-1/(v^(2)) (dv)/(dt)=1/(u^(2))(du)/(dt)` `(dv)/(dt)=v_(l)=-(v/u)^(2)(du)/(dt)=-(v/u)^(2)v_(0)` Again `1/v=1/f-1/u=2/R-1/u=(2u-R)/(Ru)` `v=(uR)/(2u-R)` `v_(i)=-(v/u)^(2)v_(o)=-v_(o)(R/(2r-R))^(2)` |
|