1.

The sum of the first 45 terms of an A.P. is 3195. Complete the following activity to find the 23rd term.

Answer» `S_(n) =S_(450 = 3195`
Let the first term of the A.P. be a and the common difference d.
`S_(n) = ( n )/(2) [ 2a +square ]` ….(Formula)
`:. S_(45) = ( 45)/(2) [ 2a + square ]` …(Substituting the values )
`:. 3195 = ( 45)/(2) [ 2a + 44d]`
`:. 3195 = 45 xx square `
`:. a + 22d = square `
`:. a + 22d = 71` ...(1)
Now, 23 rd term is `t_(23)`.
`t_(n) = square ` .....(Formula)
` :. t_(23) = a+ ( 23-1) d `
`:. t_(23) = a+ 22d `
`:. t_(23) = square ` ....[From (1) ]
Activity `: S_(n) = ( n )/(2)[2a + ( n-1) d ]`
`:. S_(45) /(2) [2a+ ( 45-1) d]`
`:. 3195 = ( 45)/(2) [ 2a+ 44d]`
`:. 3195 = 45 xx a + 22d`
`:. a + 22d = ( 3195)/(45)`
`:. a+ 22d = 71` ...(1)
Now, 23rd term is `t_(23)`.
`t_(n) = a+(n-1)d ` ...(Formula)
`:. t_(23) = a+ (23-1)d`
`:. t_(23) =a+22d`
`:. t_(23) = 71` ...[From (1)]


Discussion

No Comment Found