InterviewSolution
Saved Bookmarks
| 1. |
The sum of the first 45 terms of an A.P. is 3195. Complete the following activity to find the 23rd term. |
|
Answer» `S_(n) =S_(450 = 3195` Let the first term of the A.P. be a and the common difference d. `S_(n) = ( n )/(2) [ 2a +square ]` ….(Formula) `:. S_(45) = ( 45)/(2) [ 2a + square ]` …(Substituting the values ) `:. 3195 = ( 45)/(2) [ 2a + 44d]` `:. 3195 = 45 xx square ` `:. a + 22d = square ` `:. a + 22d = 71` ...(1) Now, 23 rd term is `t_(23)`. `t_(n) = square ` .....(Formula) ` :. t_(23) = a+ ( 23-1) d ` `:. t_(23) = a+ 22d ` `:. t_(23) = square ` ....[From (1) ] Activity `: S_(n) = ( n )/(2)[2a + ( n-1) d ]` `:. S_(45) /(2) [2a+ ( 45-1) d]` `:. 3195 = ( 45)/(2) [ 2a+ 44d]` `:. 3195 = 45 xx a + 22d` `:. a + 22d = ( 3195)/(45)` `:. a+ 22d = 71` ...(1) Now, 23rd term is `t_(23)`. `t_(n) = a+(n-1)d ` ...(Formula) `:. t_(23) = a+ (23-1)d` `:. t_(23) =a+22d` `:. t_(23) = 71` ...[From (1)] |
|