1.

The sum of the infinite series `cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo`

Answer» Here, general term `T_r` can be wriiten as,
`T_r = cot^-1((4r^2+3)/(4)) = cot^-1(r^2+3/4)`
`=>T_r = tan^-1(1/(r^2+3/4)) = tan^-1(((r+1/2)-(r-1/2))/(1+r^2-1/4))`
`= tan^-1(((r+1/2)-(r-1/2))/(1+(r+1/2)(r-1/2)))`
We know, `tan^-1((x-y)/(1+xy)) = tan^-1x+tan^-1y`
`:. T_r = tan^-1(r+1/2) - tan^-1(r-1/2)``:. T_1 = tan^-1 (3/2)-tan^-1 (1/2)`
`T_2 = tan^-1 (5/2)-tan^-1 (3/2)`
`T_3 = tan^-1 (7/2)-tan^-1 (5/2)`
`T_n = tan^-1 ((2n+1)/2)-tan^-1 ((2n-1)/2)`
So, the required sum will be,
`sum T_r = tan^-1((2n+1)/2) - tan^-1(1/2)`
`=pi/2-tan^-1(1/2)`
`:. sumT_r= cot^-1(1/2)`


Discussion

No Comment Found

Related InterviewSolutions