1.

The sum of the series `(1^(2))/(1!)+(2^(2))/(2!)+(3^(2))/(3!)`+……to `infty` isA. eB. 2eC. 3eD. none of these

Answer» Answer:
We have
`(1)^(2)/(1!)+(2)^(2)/(2!)+(3)^(2)/(3!)+…….underset(n=1)overset(infty)Sigma(n)^(2)/(n!)`
Let `n^(2)=a_(0)+a_(1)=a_(2)=1`
By comparing the coefficeints of like poweres of n both sides we get
`a_(0)=0,a_(1)-a_(2)=0 and a_(2)=1`
`rarr a_(0)=0, a_(1)=a_(2)=1`
Putting the value of `a_(0,a_(1),a_(2)` (i) we get
`n^(2)=n+n(n-1)`
`therefore underset(n=1)overset(infty)Sigma(n^(2))/(n=1)(n+n(n-1))/(n!)`
`rarr underset(n=1)overset(infty)Sigma(n^(2))/(n=1){(n)/(ni+n(n-1))/(ni)}`


Discussion

No Comment Found