InterviewSolution
Saved Bookmarks
| 1. |
The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is |
|
Answer» `3((x^(2))/(a^(2))-(y^(2))/(b^(2)))=4` `(x sec theta)/(a) - y (tan theta)/(b) =1` (1) Equation of one of asymptote `RARR (x)/(a) +(y)/(b) =0` (2) `rArr` Coordinates of Q on the asymptote are `(a(sec theta -tan theta), (-b(sec theta -tan theta))` Let mid-point of PQ is `M(h,K)` `rArr h = (a sec theta+(a sec theta -a tan theta))/(2)` `rArr (h)/(a) = sec theta - (tan theta)/(2)` (3) SIMILARLY, `(k)/(b) = tan theta - (sec theta)/(2)` (4) `(3)+(4) rArr (h)/(a) + (k)/(b) = (sec theta + tan theta)/(2)` (5) `(3)-(4) rArr (h)/(a) - (k)/(b) = (3)/(2) [sec theta - tan theta]` (6) Now `(5) xx (6) rArr (h^(2))/(a^(2)) - (k^(2))/(b^(2)) = (3)/(4)` or, `4((x^(2))/(a^(2))-(y^(2))/(b^(2))) =3` |
|