1.

The value of `int(3x+2)/((x-2)^(2)(x-3))dx` is equal toA. `11log (x-3)/(x-2)-(8)/(x-2)+C`B. `11log (x+3)/(x+2)-(8)/(x-2)+C`C. `11log(x-3)/(x-2)+(8)/(x-2)+C`D. `11log (x+3)/(x+2)+(8)/(x-2)+C`

Answer» Correct Answer - C
Let l`=int(3x+2)/((x-2)^(2)(x-3))dx" …(i)"`
Again, let
`(3x+2)/((x-2)^(2)(x-3))=(A)/((x-2))+(B)/((x-2)^(2))+(C)/((x-3))" …(ii)"`
`rArr" "3x+2=A(x-2)(x-3)+B(x-3)+C(x-2)^(2)" ...(iii)"`
On putting the values of `x=2,3` respectively, we get
`3xx2+2=B(2-3)`
`rArr B=-8`
and `3xx3+2=C(3-2)^(2)`
`rArr" "C=11`
On equation the coefficient of `x^(2)` in Eq. (iii), we get
`0=A+C" "rArr" "A=-11`
On putting the values of A, B and C in Eq. (ii), we get
`(3x+2)/((x-2)^(2)(x-3))=-(11)/((x-2))-(8)/((x-2)^(2))+(11)/((x-3))`
`therefore" "l=int[-(11)/((x-2))-(8)/((x-2)^(2))+(11)/(x-3)]dx`
`-11log(x-2)+(8)/((x-2))+11log(x-3)+C`
`11log((x-3)/(x-2))+(8)/((x-2))+C`


Discussion

No Comment Found