InterviewSolution
Saved Bookmarks
| 1. |
The value of the integral `int(dx)/((e^(x)+e^(-x))^2)` isA. `(1)/(2)(e^(2x)+1)+C`B. `(1)/(2)(e^(-2x)+1)+C`C. `-(1)/(2)(e^(2x)+1)^(-1)+C`D. `(1)/(4)(e^(2x)-1)+C` |
|
Answer» Correct Answer - C Let `l=int(dx)/((e^(x)+e^(-x))^(2))=int(e^(2x)dx)/((e^(2x)+1)^(2))` Put `e^(2x)+1-z rArr 2e^(2x)dx=dz` `therefore" "i=(1)/(2)int(dz)/(z^(2))=-(1)/(2z)+C` `=-(1)/(2(e^(2x)+1))+C` `=-(1)/(2)(e^(2x)+1)^(-1)+C` |
|