1.

Two equal circles of radius r intersect such that each passes through the centre of the other. The length of the common chord of the circles is A. \(\sqrt r\)B. \(\sqrt2\) r AB C.\(\sqrt3\) r D. \(\frac{\sqrt 3}{2}\) r

Answer»

Option : (C)

Let O and O' be the centre of two circles 

OA and O'A = Radius of the circles 

AB be the common chord of both the circles 

OM perpendicular to AB 

And, 

O'M perpendicular to AB 

ΔAOO' is an equilateral triangle. 

AM = Altitude of AOO' 

Height of ΔAOO' = \(\frac{\sqrt 3}{2}\)

AB = 2 AM

= 2\(\frac{\sqrt 3}{2}\)r

\(\sqrt{3}\)r



Discussion

No Comment Found

Related InterviewSolutions