1.

Two waves are passing through a region in the same direction at the same time . If the equation of these waves are `y_(1) = a sin ( 2pi)/(lambda)( v t - x)` and `y_(2) = b sin ( 2pi)/( lambda) [( vt - x) + x_(0) ]` then the amplitude of the resulting wave for `x_(0) = (lambda//2)` isA. `| a - b|`B. ` a + b`C. `sqrt(a^(2) + b^(2))`D. `sqrt( a^(2) + b^(2) + 2 ab cos x)`

Answer» Correct Answer - A
Let `phi_(1) and phi_(2)` represent angles of the first and second waves , then
`phi_(2) = ( 2 phi)/( lambda ) [( vt - x) + x_(0)]`
and `phi_(1) = ( 2pi)/(lambda) ( v t - x)`
But `x_(0) = (lambda)/(2)`,
` phi_(2) - phi_(1) = pi`
Hence , phase difference , `phi = pi `. So , amplitude of resultant wave
`R sqrt(a^(2) + b^(2) + 2 ab cos phi)`
` = sqrt(a^(2) + b^(2) + 2 ab cos pi) = sqrt(( a - b)^(2)) = a - b`
or `R = | a - b |`


Discussion

No Comment Found

Related InterviewSolutions