1.

Using dimensions show that the viscous force acting on a glass sphere falling through a highly viscous liquid of coefficient of viscosity eta is Fprop eta av where a is the radius of the sphere and v its terminal velocity.

Answer»

Solution :Dimensional formula of `eta` is `[ML^(-1)T^(-1)]`
`F PROP eta^(x)a^(y)v^(z)`
`F=keta^(x)a^(y)v^(z)`, k is dimensionaless constant
Taking DIMENSIONS on both SIDES
`MLT^(-2)=[ML^(-1)T^(-1)]^(x)[L]^(y)[LT^(-1)]^(z)`
`MLT^(-2)=M^(x)L^(-1)T^(-x)L^(y)T^(-z)`
`MLT^(-2)=M^(x)L^(-x+y+z)T^(x-x-z)`
EQUATING dimensions on both sides
of M, `1=x""` i.e. x=1
of T `2=-x-z""-z=-2+x=-2+1,z=1`
of L `1=-x+y+z=-1+y+1""` i.e. `y=1`
`F=k eta^(1)a^(1)v^(1)`
or `F prop eta av`.


Discussion

No Comment Found