1.

Using integration find the area of the region `{(x,y):x^2+y^2=ax,x,y>=0}`

Answer» `x^2+y^2<=2ax`
`x^2-2ax+y^2+a^2-a^2<=0`
`(x-a)^2+y^2<=a^2`
`y^2>=ax`
`(x-a)^2+ax=a^2`
`x^2+a^2-2ax+ax=a^2`
`x(x-a)=0`
`x=0,a`
`y^2=ax`
`y^2=a*a=a^2`
`y=a`
Area of region`=int_0^(2a)ydx`
`int_0^asqrt(ax)dx+int_a^(2a)sqrt(2ax-x^2)dx`
`sqrtaint_0^asqrtxdx+int_a^(2a)sqrt(a^2-(x-a))dx`
`2/3a^2+[0+(a^2pi)/4-0-0]`
`=2/3a^2+pi/4a^2`
`=a^2(2/3+pi/4)`.


Discussion

No Comment Found

Related InterviewSolutions