

InterviewSolution
Saved Bookmarks
1. |
Using Pythagoras theorem determine the length of AD in terms of b and c shown in Fig. |
Answer» We have, In ∆BAC, by Pythagoras theorem, we have BC2 = AB2 + AC2 ⇒ BC2 = c2 + b2 ⇒ BC = √(c2 + b2) In ∆ABD and ∆CBA ∠B = ∠B [Common] ∠ADB = ∠BAC [Each 90°] Then, ∆ABD ͏~ ∆CBA [By AA similarity] Thus, \(\frac{AB}{CB} = \frac{AD}{CA}\) [Corresponding parts of similar triangles are proportional] \(\frac{c}{\sqrt{(c^2 + b^2)}}\) = \(\frac{AD}{b }\) ∴ AD = \(\frac{bc}{\sqrt{(c^2 + b^2)}}\) |
|