1.

Using rules in logic, prove the following : (i) p ↔ q ≡ ~ (p ∧ ~q) ∧ ~(q ∧ ~p)(ii) ~p ∧ q ≡ (p ∨ q) ∧ ~p(iii) ~(p ∨ q) ∨ (~p ∧ q) ≡ ~p

Answer»

(i) p ↔ q ≡ ~ (p ∧ ~q) ∧ ~(q ∧ ~p)

By the rules of negation of biconditional, 

~(p ↔ q) ≡ (p ∧ ~q) ∨ (q ∧ ~p) 

∴ ~ [(p ∧ ~ q) ∨ (q ∧ ~p)] ≡ p ↔ q 

∴ ~(p ∧ ~q) ∧ ~(q ∧ ~p) ≡ p ↔ q …(Negation of disjunction)

≡ p ↔ q ≡ ~(p ∧ ~ q) ∧ ~ (q ∧ ~p).

(ii) ~p ∧ q ≡ (p ∨ q) ∧ ~p

(p ∨ q) ∧ ~ p 

≡ (p ∧ ~p) ∨ (q ∧ ~p) … (Distributive Law) 

≡ F ∨ (q ∧ ~p) … (Complement Law) 

≡ q ∧ ~ p … (Identity Law) 

≡ ~p ∧ q …(Commutative Law) 

∴ ~p ∧ q ≡ (p ∨ q) ∧ ~p.

(iii) ~(p ∨ q) ∨ (~p ∧ q) ≡ ~p

~ (p ∨ q) ∨ (~p ∧ q) 

≡ (~p ∧ ~q) ∨ (~p ∧ q) … (Negation of disjunction) 

≡ ~p ∧ (~q ∨ q) … (Distributive Law) 

≡ ~ p ∧ T … (Complement Law) 

≡ ~ p … (Identity Law) 

∴ ~(p ∨ q) ∨ (~p ∧ q) ≡ ~p.



Discussion

No Comment Found