1.

Using the expression `2d sin theta = lambda`, one calculates the values of `d` by measuring the corresponding angles `theta` in the range `0 to [email protected]`. The wavelength `lambda` is exactly known and error in `theta` is constant for all values of `theta`. As `theta` increases from `[email protected]`A. the absolute error in `d` remains constant.B. the absolute error in `d` increses.C. the fractional error in `d` remains constant.D. the fractional error in `d` decreases.

Answer» Correct Answer - D
`2d sintheta=lambda`
`d=(lambda)/(2 sin theta)`
differntiate
`del(d)=(lambda)/(2) del (cosectheta)`
`del(d)=(lambda)/(2)(-cos esthetacottheta)deltheta`
`del(d)=(-lambdacostheta)/(2sin^(2)theta)deltheta`
as `theta= "increases", (lambdacostheta)/(2sin^(2)theta) , "decreases"`
Alternate solution
`d=(lambda)/(2sintheta)`
`ln d=ln lambda-ln2-ln sintheta`
`(Delta(d))/(d)=0-0-(1)/(sin theta)xxcostheta(Deltatheta)`
Fraction error `|+(d)|=|cotthetaDeltatheta|`
Absoulute error `Deltad=(dcottheta)Deltatheta`
`(d)/(2sintheta)xx(costheta)/(sintheta)`
`Deltad=(costheta)/(sin^(2)theta)`


Discussion

No Comment Found

Related InterviewSolutions