InterviewSolution
Saved Bookmarks
| 1. |
Verify by method of contradiction p ∶ \(\sqrt{11}\) is irrational. |
|
Answer» Let the given statement be false i.e., ~ p ∶ \(\sqrt{11}\) Is rational. The \(\sqrt{11}\) = \(\frac{p}{q}\) where p and q are coprime and q ≠ 0. ⇒ 11 = \(\frac{p^2}{q^2}\) ⇒ p2 = 11q2 ⇒ 11 divides p ...(1) ∴ r ∈ z such that− p = 11r ⇒ p2 = 121r ⇒ 11q2 = 121r2 ⇒ q2 = 11r2 ⇒ 11 divides q … (2) From (1) & (2), we arrive at a contradiction, since p and q are coprime. ⇒ \(\sqrt{11}\) is irrational. |
|