1.

Verify by the method of contradiction that √7  is irrational

Answer»

Let  p : √7  is irrational 

Let us assume p is not true i.e..,  √7 is rational . 

⇒ √7 = a/b, where a and b are integers having no common factor.

⇒ 7 = a2/b2

⇒ a2  =7b2 

⇒ 7 divides a2 

⇒ 7 divides a 

⇒ a = 7c, for some integer c. 

⇒ a2  = 49c2 

⇒ 7b2  = 49c2 

⇒ b2  = 7c2 

⇒ 7 divides b2 

⇒ 7 divides b 

Thus, 7 is common factor of both a and b. This contradicts that a and b have no common factor. 

So, our assumption is wrong. 

Hence, √7  is irrational is true.



Discussion

No Comment Found

Related InterviewSolutions