InterviewSolution
| 1. |
We Can’t Control The Weather: How Reliable Are Wind And Solar Really? |
|
Answer» This is PRECISELY the reason that utility grids need to be planned. On their own, wind and solar energy could not power 100% of our electricity needs: Germany and Denmark will both shortly have >50% of their power from wind and solar, but the rest of their mix is provided by other complimentary sources. In Ontario, we would use dispatchable power (power that is easily turned on or off when needed) like hydro and natural gas to make-up the rest of our supply mix. That said, wind and solar combined are presently less than 5% of our supply, and will be for some time yet: more than 10 times more supply is available in dispatchable power here, so the intermittency of wind and solar are not a problem in Ontario, and won’t be until we have much more wind and solar energy connected to our grid. There are important differences between “reliability” and “intermittency”: wind and solar energy systems are very reliable, but they are also intermittent. “Intermittent” means that they are not ALWAYS available (eg: when the sun isn’t shining or the wind isn’t BLOWING). Wind technology is based on simple motors that are used AROUND the world in many industries very reliably, and wind turbines consistently have availability of over 97%: that means that they are more than 97% reliable, and will be working when the wind is blowing. Some of that last 3% is when the wind is blowing so strongly that the wind turbine must turn or throttle itself down in order to not be torn apart by the wind, so the machines themselves are very reliable (>97%). Solar energy is even more reliable: over 98% available. The maintenance logs for wind turbines and solar panels are relatively boring. That’s a sign of reliability. For comparison, nuclear reactors are not intermittent at all (they generate very consistent and inflexible outputs, which is why they can’t be used for dispatchable power the way that hydro and natural gas can), but they are sometimes unreliable: Ontario has approximately 14,000 MW of nuclear reactors presently, but only ~11,500 MW are in use, because the other 2,500 MW have been SHUT down for safety reasons (see the “Farlinger Report” in the 2nd and 3rd reference links below). This is precisely the reason that utility grids need to be planned. On their own, wind and solar energy could not power 100% of our electricity needs: Germany and Denmark will both shortly have >50% of their power from wind and solar, but the rest of their mix is provided by other complimentary sources. In Ontario, we would use dispatchable power (power that is easily turned on or off when needed) like hydro and natural gas to make-up the rest of our supply mix. That said, wind and solar combined are presently less than 5% of our supply, and will be for some time yet: more than 10 times more supply is available in dispatchable power here, so the intermittency of wind and solar are not a problem in Ontario, and won’t be until we have much more wind and solar energy connected to our grid. There are important differences between “reliability” and “intermittency”: wind and solar energy systems are very reliable, but they are also intermittent. “Intermittent” means that they are not always available (eg: when the sun isn’t shining or the wind isn’t blowing). Wind technology is based on simple motors that are used around the world in many industries very reliably, and wind turbines consistently have availability of over 97%: that means that they are more than 97% reliable, and will be working when the wind is blowing. Some of that last 3% is when the wind is blowing so strongly that the wind turbine must turn or throttle itself down in order to not be torn apart by the wind, so the machines themselves are very reliable (>97%). Solar energy is even more reliable: over 98% available. The maintenance logs for wind turbines and solar panels are relatively boring. That’s a sign of reliability. For comparison, nuclear reactors are not intermittent at all (they generate very consistent and inflexible outputs, which is why they can’t be used for dispatchable power the way that hydro and natural gas can), but they are sometimes unreliable: Ontario has approximately 14,000 MW of nuclear reactors presently, but only ~11,500 MW are in use, because the other 2,500 MW have been shut down for safety reasons (see the “Farlinger Report” in the 2nd and 3rd reference links below). |
|