

InterviewSolution
Saved Bookmarks
1. |
What is `int(dx)/(2^(x) -1)` equal to ?A. `ln (2^(x) -1) + c`B. `(ln(1 -2^(-x)))/(ln 2) + c`C. `(ln (2^(-x) -1))/(2ln 2) + c`D. `(ln(1 + 2^(-x)))/(ln 2) + c` |
Answer» Correct Answer - B `int (dx)/(2^(x) -1) =int (dx)/((1)/(2^(-x)))` `= int (2^(-x))/(1 -2^(-x)).dx` Let `1 - 2^(-x) = t` `rArr 2^(-x) .log 2 = (dt)/(dx) rArr 2^(-x) = (1)/(log 2).(dt)/(dx) rArr 2^(-x).dx = (dt)/(log 2)` `:. int (2^(-x))/(1 -2^(-x)) dx = (1)/(log 2) int (dt)/(t) = (1)/(log 2) (log t) + c` `= (1)/(log2) (log (1 - 2^(-x))) + c` |
|