1.

What is the largest average velocity of blood flow in an artery of radius 2xx10^(-3)m if the flow must remain laminar > (b) What is the corresponding flow rate ? (Take vicosity of blood to be 2.084xx10^(-3)Pa s).

Answer» <html><body><p></p>Solution :Density of blood `rho=<a href="https://interviewquestions.tuteehub.com/tag/1-256655" style="font-weight:bold;" target="_blank" title="Click to know more about 1">1</a>.06xx10^(3)<a href="https://interviewquestions.tuteehub.com/tag/kgm-2769156" style="font-weight:bold;" target="_blank" title="Click to know more about KGM">KGM</a>^(-3)`<br/>Radius of the artery `r=2xx10^(-3)`<br/>The <a href="https://interviewquestions.tuteehub.com/tag/coefficient-920926" style="font-weight:bold;" target="_blank" title="Click to know more about COEFFICIENT">COEFFICIENT</a> of viscosity of blood,<br/>`eta=2.84xx10^(-3)`Pas<br/> For streamline flow `N_(R)=2000`<br/>(a) Suppose the largest <a href="https://interviewquestions.tuteehub.com/tag/average-13416" style="font-weight:bold;" target="_blank" title="Click to know more about AVERAGE">AVERAGE</a> velocity of blood is v,<br/>Reynold.s number <br/>`R_(e)=(RhovD)/(eta)`<br/>`thereforev=(R_(e)eta)/(rgoD)`<br/>`(2000xx2.084xx10^(-3))/(1.06xx10^(3)xx2xx2xx10^(-3))`<br/>`=983xx10^(-3)`<br/> `=0.983`<br/>`thereforev=0.98ms^(-1)`<br/>(b)Suppose flow ate of blood is V,<br/> `thereforeV=` arrea of cross section of artery `xx` velocity of blood <br/> `=pir^(2)xxv`<br/>`=3.14xx(2xx10^(-3))^(2)xx0.98`<br/>`=12.3xx10^(-<a href="https://interviewquestions.tuteehub.com/tag/6-327005" style="font-weight:bold;" target="_blank" title="Click to know more about 6">6</a>)`<br/>`=1.23xx10^(-5)m^(3)s^(-1)`</body></html>


Discussion

No Comment Found