InterviewSolution
Saved Bookmarks
| 1. |
What is the value of 6t such that volume contained inside the planes sqrt(1-t^(2))x+tz=2sqrt(1-t^(2)) z=0,x=2+(tsqrt(4t^(2)-5t+2))/(sqrt(12)(1-t^(2))^((1)/(4))) and |y|=2 is maximum. |
|
Answer» `AB=(tsqrt(4t^(2)-5t+2))/(SQRT(12)(1-t^(2))^((1)/(4)))` Let `CAB=theta=` angle between first plane and `xy`- plane the `costheta=t` Area of `DeltaABC=Delta=(1)/(2)(AB)^(2)TANTHETA` `Delta=(1)/(2)(t^(2)(4t^(2)-5t+2))/(12(1-t^(2))^((1)/(2)))xx(sqrt(1-t^(2)))/(t)=(1)/(2)(4t^(3)-5t^(2)+2t)/(12)` For example `(dDelta)/(dt)=0implies12t^(2)-10t+2=0` `impliest=(10+-sqrt(100-96))/(24)=(1)/(2)` or `(1)/(3)` Now `(d^(2)Delta)/(dt^(2))=24t-10` So `Delta` is maximum at `t=(1)/(3)` and minimum at `t=(1)/(2)` `becauset=(1)/(3)`
|
|