

InterviewSolution
Saved Bookmarks
1. |
What would be the angular speed of earth, so that body lying on equator may appear weightless? ( g = 10 m//s^2 , radius of earth = 6400 km) |
Answer» <html><body><p>`<a href="https://interviewquestions.tuteehub.com/tag/1-256655" style="font-weight:bold;" target="_blank" title="Click to know more about 1">1</a>.25 xx10^(-3)` rad/sec <br/>`1.56 xx10^(-3)` rad/sec <br/>`1.25 xx10^(-1)` rad/sec <br/>`1.56 xx10^(-1)` rad/sec </p>Solution :`implies g. = g - R_(e) omega^(2) <a href="https://interviewquestions.tuteehub.com/tag/cos-935872" style="font-weight:bold;" target="_blank" title="Click to know more about COS">COS</a>^(2) <a href="https://interviewquestions.tuteehub.com/tag/lamda-536483" style="font-weight:bold;" target="_blank" title="Click to know more about LAMDA">LAMDA</a>` <br/> In weightless state `g.=0` <br/> Taking for equator `lamda=0` <br/> `0 = g - Romega^2` <br/> `:. Romega^2 =g` <br/> `omega=sqrt(g/R_e)=sqrt(<a href="https://interviewquestions.tuteehub.com/tag/10-261113" style="font-weight:bold;" target="_blank" title="Click to know more about 10">10</a>/(6400xx10^3))=1/800 (rad)/s` <br/> `omega=1.25 xx10^(-3) (rad)/s`</body></html> | |