

InterviewSolution
Saved Bookmarks
1. |
Write the number of real roots of the equation x2 + 3 |x| + 2 = 0. |
Answer» If ax2 + bx + c = 0 then x \(=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\) If D = b2 − 4ac ≥ 0 then the values of x are real If D = b2 − 4ac < 0 then the values of x are complex |z| is always a positive real number regardless of x being a real number or complex number. Given eqn. is |x|2 + 3|x| + 2 = 0 and a = 1, b = 3 and c = 2 |x|2 + 3|x| + 2 = 0 ⇒ |x| = \(\frac{-3\pm\sqrt{9-8}}{2}\) ⇒ |x| = 2 or −1 But |x| cannot be negative No real root for the equation. |
|