1.

Write the solution set of |\(x\) + \(\frac{1}{x}\)| > 2.|x + 1/x| > 2.

Answer»

|x + 1/x| > 2

⇒ - 2 < \(x\)\(\frac{1}{x}\) < 2

Part I : \(x\)\(\frac{1}{x}\) > - 2

⇒ \(\frac{x^2+2x+1}{x}\) > 0

⇒ \(\frac{(x+1)^2}{x}\) > 0

Square term is always positive and (x + 1)2 ≠ 0. 

So, x > 0 and x ≠ -1

Part II :  \(x\)\(\frac{1}{x}\)< 2

⇒ \(\frac{x^2-2x+1}{x}\) < 0

⇒ \(\frac{(x-1)^2}{x}\) < 0

Square term is always positive and (x – 1)2 ≠ 0. 

So, x < 0 and x ≠ 1 

So, by taking union of part I and part II 

We have final solution i.e., 

x ∈ R – {-1, 0, 1}



Discussion

No Comment Found