InterviewSolution
Saved Bookmarks
| 1. |
`(x^(2)+1)^(2)-x^(2)=0` has (i) four real roots (ii) two real roots (iii) no real roots (iv) one real root |
|
Answer» Given equation is `(x^(2)+1)^(2)-x^(2)=0` `implies(x^(2)+1-x)(x^(2)+1+x)=0` `impliesx^(2)+1-x=0orx^(2)+1+x=0` For first equation `x^(2)+1-x=0` i.e., `x^(2)+1+x=0` `D=(-1)^(2)-4(1)(1)=1-4=-3lt0` `implies` Equation has no real root. For second equation `x^(2)+1+x=0` i.e., `x^(2)+x+1=0` `D=(1)^(2)-4(1)(1)=1-4=-3lt0` `implies` Equation has no real root. Hence, given equation has no real root. |
|