1.

`(|x-2|-1)/(|x-2|-2)le0`

Answer» We have either `x-2ge0orx-2lt0`.
Case I When `x-2 ge0`.
In this case, `x ge 2 and |x-2|=x-2`
So, the given inequation becomes
`(x-2-1)/(x-2-2)le0rArr(x-3)/(x-4)le0`.
`therefore (x-3ge0andx-4lt0)or(x-3le0andx-4gt0)`
`rArr (xge3 andxlt4)or(xlt3 andx gt4)`
`rArr 3lexlt4" "[thereforexlt3 andx gt4 " isnot possible"]`
`rArr x in[3,4)" "["this include " xge2]`.
Case II When `x-2lt0`
In this case, `xlt 2 and |x-2|=-(x-2)=-x+2`.
So, the given inequation becomes
`(-x+2-1)/(-x+2-2)le0rArr(-x+1)/(-x)le0`
`rArr(x-1)/(x)le0`
[mulitplying num. and denom.by -1]
`therefore(x-1le0andxgt0)or(x-ge0 and xlt0)`
`rArr(xle1 andxgt0)or(xge1andx lt0)`
`rArr 0ltxle1" "[thereforex ge1andx lt0 " is not possible"]`
`rArrx in(0,1]" "["this include " xlt2]`.
Hence, from the above two cases, we get
Solution set `=(0,1]uu[3,4)`.


Discussion

No Comment Found