InterviewSolution
| 1. |
X-rays of wavelength 0.2 nm are scattered from a block of carbon. If the scattered radiation is detected at 90◦to theincident beam, find (a) the Compton shift, and (b) the kinetic energy imparted to the recoiling electron. |
|
Answer» Given θ = 90° (a) Compton effect scattered wavelength incident wavelength compton shift Δλ \(=\frac h{m_ec}\) (1 - cos θ) Δλ \(=\frac h{m_ec}\) (1 - cos 90°) Δλ \(=\frac h{m_ec}\) (1 - 0) Δλ \(=\frac h{m_ec}\) where h = plank constant c = speed of light me = mass of electron λf - λi \(=\frac h{m_ec}\) (1 - cos θ) (θ = 90°, cos 90° = 0) λf - 0.2 x 10-9 \(=\frac h{m_ec}\) λf - 0.2 x 10-9 \(=\frac{6.63\times10^{-34}}{9.1\times10^{-31}\times3\times10^8}\) λf = 0.2 x 10-9 + 0.24 x 10-11 λf = 0.20 x 10-10 + 0.024 x 10-10 λf = 0.224 x 10-10 λf = 0.0224 x 10-9 m Compton shift Δλ = λf - λi Δλ = 0.0224 - 0.2 Δλ = -0.1776 nm (b) Kinetic energy imparted to the recoiling electron. Ek \(=\frac{h^2}{2m\lambda^2}\) Ek \(=\frac{(6.64\times10^{-34})^2}{2\times9.1\times10^{-31}\times(0.2\times10^{-9})^2}\) Ek \(=\frac{44.08\times10^{-68}}{0.728\times10^{-18}\times10^{-31}}\) Ek = 60.54 x 10-19 J K.E = 37.83 eV |
|