1.

यदि `(x^(2)+y^(2))^(2)=xy,` तो `(dy)/(dx)` का मान ज्ञात कीजिये ।

Answer» `(x^(2) + y^(2) ) ^(2) = xy " "` …(1)
दोनों पक्षों का x के सापेक्ष अवकलन करने पर ,
` 2(x^(2) + y^(2)) ( 2x + 2y (dy)/(dx)) = x (dy)/(dx) + y `
` rArr 4 ( x^(2) + y^(2)) ( x + y (dy)/(dx)) = x (dy)/(dx) + y `
` rArr { 4 y ( x^(2) + y^(2) ) -x} (dy)/(dx) = x (dy)/(dx)=y- 4(x^(2) + y^(2) ) x`
`rArr (dy)/(dx) = (y-4(x^(2) + y^(2) )x)/(4y (x^(2) + y^(2) - x ))`
` = (y-4sqrt(xy) x)/(4y sqrt (xy)- x) " "` [समीकरणों (1) से ]
` = ( sqrt(y) ( sqrt(y)-4x sqrt(x)))/(sqrt(x)(4y sqrt(y) - sqrt(x)))`


Discussion

No Comment Found