1.

यदि `x^(m)y^(n)=(x+y)^("m+y")`, तो सिद्ध कीजिये कि `(d^(2)y)/(dx^(2))=0`.

Answer» ` x^(m) y^(n) = (x +y)^(m+n) " "`…(1) gt दोनों पक्षों का लघुगणक लेने पर ,
` m/x + n/y (dy)/(dx) = ( m +n) 1/(x+y)*(1+(dy)/(dx))`
` rArr (n/y-(m+n)/(x+y))(dy)/(dx) = (m+n)/(x +y) - m/x `
` rArr {(m(x+y)-y(m+n))/(y(x+y))} (dy)/(dx)`
` = ((m+n) x - m (x +y))/((x+y)x)`
` rArr { (nx-my)/(y(x+y))}(dy)/(dx) = (nx-my)/((x+y)x)`
` rArr (dy)/(dx) = y /x " "`...(2)
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
` (d^(2)y)/(dx^(2)) = (x(dy)/(dx)-y)/(x^(2))= (x(y/x)-y)/(x^(2))" " ` [समीकरणों (2) से ]
=0


Discussion

No Comment Found