InterviewSolution
Saved Bookmarks
| 1. |
यदि `x^(m)y^(n)=(x+y)^("m+y")`, तो सिद्ध कीजिये कि `(d^(2)y)/(dx^(2))=0`. |
|
Answer» ` x^(m) y^(n) = (x +y)^(m+n) " "`…(1) gt दोनों पक्षों का लघुगणक लेने पर , ` m/x + n/y (dy)/(dx) = ( m +n) 1/(x+y)*(1+(dy)/(dx))` ` rArr (n/y-(m+n)/(x+y))(dy)/(dx) = (m+n)/(x +y) - m/x ` ` rArr {(m(x+y)-y(m+n))/(y(x+y))} (dy)/(dx)` ` = ((m+n) x - m (x +y))/((x+y)x)` ` rArr { (nx-my)/(y(x+y))}(dy)/(dx) = (nx-my)/((x+y)x)` ` rArr (dy)/(dx) = y /x " "`...(2) दोनों पक्षों का x के सापेक्ष अवकलन करने पर, ` (d^(2)y)/(dx^(2)) = (x(dy)/(dx)-y)/(x^(2))= (x(y/x)-y)/(x^(2))" " ` [समीकरणों (2) से ] =0 |
|