InterviewSolution
Saved Bookmarks
| 1. |
1). 212). 283). 354). 19 |
|
Answer» FIRST Case: Amount = 2P Time = 7 years Rate = r% ⇒ $(2P = P \times {\left( {1 + \frac{r}{{100}}} \right)^7})$ ⇒ 2 = (1 + 0.01r)7 ⇒ $({2^{\frac{1}{7}}} = 1 + 0.01r)$----(1) Second Case: Principal = P Amount = 16P Time = t Rate = r% ⇒ $(16P = P \times {\left( {1 + 0.01r} \right)^t})$ ⇒ $(16 = {\left( {1 + 0.01r} \right)^t})$ From EQ. (1), we get ⇒ $({2^4} = {\left( {{2^{\frac{1}{7}}}} \right)^t})$ ⇒ 4 = t/7 ⇒ t = 4 × 7 = 28 ∴ Sum will be 16 times after 28 years. |
|