1.

1). 212). 283). 354). 19

Answer»

FIRST Case:

PRINCIPAL AMOUNT = P

Amount = 2P

Time = 7 years

Rate = r%

⇒ $(2P = P \times {\left( {1 + \frac{r}{{100}}} \right)^7})$

⇒ 2 = (1 + 0.01r)7

⇒ $({2^{\frac{1}{7}}} = 1 + 0.01r)$----(1)

Second Case:

Principal = P

Amount = 16P

Time = t

Rate = r%

⇒ $(16P = P \times {\left( {1 + 0.01r} \right)^t})$

⇒ $(16 = {\left( {1 + 0.01r} \right)^t})$

From EQ. (1), we get

⇒ $({2^4} = {\left( {{2^{\frac{1}{7}}}} \right)^t})$

⇒ 4 = t/7 ⇒ t = 4 × 7 = 28

∴ Sum will be 16 times after 28 years.



Discussion

No Comment Found