InterviewSolution
Saved Bookmarks
| 1. |
1+3+3^(2)+....+3^(n-1) = |
|
Answer» `((3^(N)-1))/(2)` `" If "n =1 , "the " L.H.S. =1` `R.H.S. =(3^(1)-1)/(2)=(3-1)/(2)=1` `:. ""L.H.S. =R.H.S.` Therefore the STATEMENT P (n) is true for n=1 Let P (n) be true for n=K. `:. P (k) : 1+3+3^(2) +.....+3^(k-1) =(3^(K)-1)/(2)` `P (k+1) :1+3+3^(2)+......+3^(k)` `=1+3+3^(2)+......+3^(k)` `=1+3+3^(2)+.......+3^(k-1)+3^(k)` `=(3^(k)-1)/(2) +3^(k)` `=(3^(k)-1+2.3^(k))/(2)=((1+2)3^(k)-1)/(2)` `=(3.3^(k)-1)/(2)=(3^(k+1)-1)/(2)` Then the statement P (n) is also true for n=K +1 , HENCE form the principle of MATHEMATICAL induction P (n) is true for `n in N` |
|