1.

1. Fill in the blanksName of gasDegrees of freedomInternal energyCVCP?Monoatomic3......\(\frac{3}{2}R\)...........Diatomic rigid.......\(\frac{5}{2} RT\).......\(\frac{7}{2}R\)........ 2. What happens to the value of ratio of specific heat capacity, if we consider all rotational degrees of freedom of a 1-mole diatomic molecule?

Answer»

1. 

Name of gasDegrees of freedomInternal energyCVCP?
Monoatomic3\(\frac{3}{2}RT\)\(\frac{3}{2}R\)\(\frac{5}{2} R\)\(\frac{5}{2} \)
Diatomic rigid6\(\frac{5}{2} RT\)\(\frac{5}{2} R\)\(\frac{7}{2}R\)\(\frac{7}{2}\)

2. Total degrees of freedom = 3 (trans) + 3 (Rot) = 6

∴ CV = 3R, CP = 4R

Ratio of specific heat γ = \(\frac{4}{3}\)

Ratio of specific heat capacity decreases.



Discussion

No Comment Found

Related InterviewSolutions