InterviewSolution
Saved Bookmarks
| 1. |
1-i |
|
Answer» then `rcostheta=1 andr sintheta=-1` SQUARING and adding both equations, `r^(2)COS^(2)theta+ r^(2)sin^(2)theta=(1)^(2)+(-1)^(2)=1+1=2` `rArr""r^(2)(cos^(2)+sin^(2)theta)=2" "rArr" "r^(2) =2 orr=sqrt(2)` and `""TANTHETA=(rsintheta)/(rcos theta )=(-1)/(1)=-1` `""=TAN(-45^(@))=tan(-(pi)/(4))` `rArr""theta=(-pi)/(4)` Therefore, `1-i=r(costheta+isintheta)` `""=sqrt(2)[ cos(-(pi)/(4))+sin((-pi)/(4))]` |
|