InterviewSolution
| 1. |
1). Rs. 350002). Rs. 480003). Rs. 560004). Rs. 36600 |
|
Answer» Let the PRINCIPAL = Rs. 100 Now, S.I. on Rs. 100 = PTR/100 $(\Rightarrow \frac{{100 \times 5 \times 3}}{{100}} = {\rm{Rs}}.{\rm{}}15)$ Thus, S.I. on Rs. 100 = Rs. 15 $(\begin{ARRAY}{l} \Rightarrow {\rm{Now}},{\rm{\;C}}.{\rm{I}}.{\rm{\;on\;Rs}}.{\rm{\;}}100 = {\rm{P}}{\left( {1 + \frac{{\rm{R}}}{{100}}} \right)^{\rm{t}}} - {\rm{P}}\\ \Rightarrow 100{\left( {1 + \frac{5}{{100}}} \right)^3} - 100 = {\rm{Rs}}.{\rm{\;}}15.7625 \end{array})$ ⇒ C.I. on Rs. 100 = Rs. 15.7625 Now, the difference of C.I. and S.I. = 15.7625 – 15 = 0.7625 ⇒ For Rs. 100 the difference in C.I. and S.I. is Rs. 0.7625 ⇒ For Rs. X the difference in C.I. and S.I. is Rs. 366 $(\Rightarrow {\rm{X}} = \frac{{100 \times 366}}{{0.7625}} = {\rm{Rs}}.{\rm{\;}}48000)$ ∴ On Rs. 48000, the difference of compound and simple interest, shall come out to be Rs. 366 |
|