InterviewSolution
| 1. |
Find the annual installment which will discharge a debt of Rs. 63840 in 3 years at 8% p.a. compound interest –1). Rs. 23309.702).3). Rs. 29407.904). Rs. 29804.50 |
|
Answer» For CI: $(A = P{\left( {\;1\; + \frac{r}{{100}}\;} \right)^t})$ Where, A is the amount at the end of time t, P is the principal, t is time, r is rate Let the annual INSTALLMENT be a. For 1 YEAR, $({\rm{a}} = {P_1} \times {\left( {\;1 + \frac{r}{{100}}\;} \right)^1})$ For 2 YEARS $({\rm{a\;}} = {P_2} \times {\left( {\;1 + \frac{r}{{100}}\;} \right)^2})$ For 3 years $({\rm{a}} = {P_3} \times {\left( {\;1 + \frac{r}{{100}}\;} \right)^3})$ GIVEN, P1 + P2 + P3 = 63840 and r = 8% $(\Rightarrow \frac{a}{{1 + \frac{8}{{100}}}} + \frac{a}{{{{\left( {\;1 + \frac{8}{{100}}} \right)}^2}}} + \frac{a}{{\;{{\left( {1 + \frac{8}{{100}}} \right)}^3}}} = {\rm{\;}}63840)$ ⇒ a × (2.577 ) = 63840 ⇒ a = Rs. 24772.06 |
|