1.

`(1 - x ^(2)) (dy)/(dx) + xy = x sqrt(1-x^(2))`

Answer» Correct Answer - `y = (-1)/(2) sqrt (1 - x ^(2)) log ( 1- x ^(2)) + C sqrt ( 1- x ^(2))`
` (dy)/(dx) + (x)/( (1- x ^(2))) * y = (x)/(sqrt (1 - x ^(2)))`
` IF = e ^(-(1)/(2)int (-2x)/((1- x ^(2))) dx) = e^(- (1)/(2) log ( 1- x ^(2)) = e ^(log"" (1)/(sqrt (1- x ^(2)))) = (1)/(sqrt (1- x ^(2))`
`therefore ` its solution is
`y xx (1)/(sqrt (1- x ^(2))) = int (x)/(sqrt (1 - x ^(2))) * (1)/(sqrt (1- x ^(2))) dx = (-1)/(2) int (-2x )/(( 1 - x ^(2))) dx + C `
`" " = - (1)/(2) log (1 - x ^(2)) + C`.


Discussion

No Comment Found