1.

`(1)/(x^(2)(x^(4)+1)^((3)/(4)))`

Answer» `int(1)/(x^(2)(x^(4)+1)^(3//4))dx`
`" "=int(1)/(x^(2){x^(4)(1+(1)/(x^(4)))}^(3//4))dx`
`" "=int(1)/(x^(5)(1+(1)/(x^(4)))^(3//4))dx`
माना`" "1+(1)/(x^(4))=t" "rArr(-4)/(x^(5))dx=dtrArr(1)/(x^(5))dx=(dt)/(4)`
`" "=int(1)/(x^(3//4)).(dt)/(-4)=-(1)/(4).intt^(-3//4)dt`
`" "=-(1)/(4).(t^(1//4))/(1//4)+C`
`" "=-(1+(1)/(x^(4)))^(1//4)+C`
`" "=-((x^(4)+1)/(x^(4)))^(1//4)+C`
`" "=-(1)/(x)(x^(4)+1)^(1//4)+C`


Discussion

No Comment Found