1.

16. If a = 31 +1 +2k and b = 21-2; +4k(a) find the magnitude of axb(b) find a unit vector perpendicular to both ā and b(c)find the cosine and sine of the angle between the vector and b​

Answer»

Steps :

is that a=3i+J+2k, and b=2i-2j+4 ?

WELL,

Q.a

a × b = i (1·4 - 2·(-2)) - j (3·4 - 2·2) + K (3·(-2) - 1·2)

= i (4 + 4) - j (12 - 4) + k (-6 - 2)

= 8( i-j-k)

(ans of Q.a)

Q.b

unit vector perpendicular to both ā and b is=

\frac{ a \times b }{ |a \times b| }

\frac{8( i-j-k)}{ \sqrt{64  + 64 + 64} }

\frac{8( i-j-k)}{ {8 \sqrt{3} } }

\frac{( i-j-k)}{ { \sqrt{3} } }

(ans of Q.b)

Q.c

cos angle between the vector a and b :

\cos \alpha  =   \frac{a.b}{ |a| . |b| }

{calculate steps }

(ans of Q.c)

SINE angle between the vector a and b :

\sin  \alpha  =   \frac{ |a \times b| }{ |a| . |b| }

{calculate steps }

(ans of Q.c)

Mark as Brainliest if it helps ⚡ thank you .



Discussion

No Comment Found

Related InterviewSolutions