Saved Bookmarks
| 1. |
18 men can complete a project in 30 days and 16 women can complete the same project in 36 days. 15 men start working and after 9 days they are replaced by 18 women. In how many days will 18 women complete the remaining work ?1). 202). 303). 264). 28 |
|
Answer» Solution $\frac{M1D1}{W1}$ = $\frac{M2D2}{W2}$ W1=W2 = Q $\frac{18Mx30}{Q}$ = $\frac{16Wx36}{Q}$ Let the DAYS REQUIRED by 18 women to complete the remaining work = y days so $\frac{(15Mx9)+(18W x y)}{Q}$= $\frac{16Wx36}{Q}$ ......(2) using EQUATION 1 and 2 $\frac{(16Wx9)+(18W x y)}{Q}$= $\frac{16Wx36}{Q}$ 144W + 18Wy = 576W 18Wy = 432 W y = 24 days |
|