1.

18 men can complete a project in 30 days and 16 women can complete the same project in 36 days. 15 men start working and after 9 days they are replaced by 18 women. In how many days will 18 women complete the remaining work ?1). 202). 303). 264). 28

Answer»

Solution

$\frac{M1D1}{W1}$ = $\frac{M2D2}{W2}$

W1=W2 = Q

$\frac{18Mx30}{Q}$ = $\frac{16Wx36}{Q}$

M = $\frac{32}{30}$W ....(1)

Let the DAYS REQUIRED by 18 women to complete the remaining work = y days

so $\frac{(15Mx9)+(18W x y)}{Q}$= $\frac{16Wx36}{Q}$ ......(2)

using EQUATION 1 and 2

$\frac{(16Wx9)+(18W x y)}{Q}$= $\frac{16Wx36}{Q}$

144W + 18Wy = 576W

18Wy = 432 W

y = 24 days




Discussion

No Comment Found

Related InterviewSolutions