

InterviewSolution
Saved Bookmarks
1. |
18 " mL of " 1.0 M `Br_(2)` solution undergoes complete disproportionation in basic medium to `Br^(The hardness of water in terms of )` and `BrO_(3)^(ɵ)`. Then the resulting solution required 45 " mL of " `As^(3+)` solution to reduce `BrO_(3)^(ɵ)` to `Br^(ɵ)`. `As^(3+)` is oxidised to `As^(5+)` which statements are correct?A. `Ew(Br_(2))=(M)/(10)`B. `Ew(Br_(2))=(5M)/(3)`C. Molarity of `As^(+3)=0.4M`D. Molarity of `As^(3+)=0.2M` |
Answer» Correct Answer - B::C `[2e^(-)+Br_(2)to2Br^(ɵ)]xx5` `underline(Br_(2)to2BrO_(3)^(ɵ)+10e^(-))` `underline(6Br_(2)to5Br^(ɵ)+2BrO_(3)^(ɵ))` Ew of `Br_(2)=(M)/(2)+(M)/(10)=(10M)/(6)=(5M)/(3)` mmoles of `Br_(2)=18xx1=18` So mmoles of `BrO_(3)^(ɵ)=(18)/(6)xx2=6` `m" Eq of "underset((n=2))(As^(+3))tomEq . underset((n=6))(of BrO_(3)^(ɵ))` `6e^(-)+BrO_(3)^(ɵ)toBr^(ɵ)` `m" Eq of "As^(3+)-=m" Eq of "BrO_(3)^(ɵ)` `45xxMxx2` ("n factor")`-=6xx6` `thereforeM_(As^(3+))=(36)/(90)=0.4`M |
|