1.

19.5 g of CH_(2)FCOOH is dissolved in 500 g of water. The depression in the freezing point observed is 1.0^(@)C. Calculate the van't Hoff factor and dissociation constant of fluoroacetic acid. K_(f) for water is "1.86 K kg mol"^(-1).

Answer»

Solution :Here, `w_(2)=19.5g, w_(1)=500g, K_(f)="1.86 K kg mol"^(-1),(DeltaT_(f))_("obs")=1.0^(@)`
`therefore""M_(2)"(observed)"=(1000K_(f)w_(2))/(w_(1)DeltaT_(f))=(("1000 g kg"^(-1))("1.86 K kg mol"^(-1))("19.5 g"))/("(500 g)""(1.0 K)")="72.54 g mol"^(-1)`
`M_(2)"(calculated) for "CH_(2)FCOOH=14+19+45="78 g mol"^(-1)`
`"van't Hoff FACTOR (i)"=((M_(2))_("cal"))/((M_(2))_("obs"))=(78)/(72.54)=1.0753.`
Calculation of dissociation constant. Suppose degree of dissociation at the given concentration is `ALPHA`.
`{:("Then",CH_(2)FCOOH,hArr,CH_(2)FCOO^(-),+,H^(+),),("Initial","C mol L"^(-1),,,,,),("At EQM.",C(1-alpha),,Calpha,,Calpha",","Total "=C(1+alpha)):}`
`therefore""i=(C(1+alpha))/(C)=1+alpha"or"alpha=i-1=1.0753-1=0.0753`
`K_(a)=([CH_(2)FCOO^(-)][H^(+)])/([CH_(2)FCOOH])=(Calpha.Calpha)/(C(1-alpha))=(Calpha^(2))/(1-alpha)`
Taking volume of the solution as 500 mL,
`C=(19.5)/(78)xx(1)/(500)xx1000=0.5M""therefore""K_(a)=(Calpha^(2))/(1-alpha)=((0.5)(0.0753)^(2))/(1-0.0753)=3.07xx10^(-3)`.


Discussion

No Comment Found