1.

`(5x)/((x+1)(x^(2)+9))`

Answer» `int(5x)/((x+1)(x^(2)+9))dx`
माना `(5x)/((x+1)(x^(2)+9))=(A)/(x+1)+(Bx+C)/(x^(2)+9)`
`rArr" "5x=A(x^(2)+9)+(Bx+C)(x+1)`
`x=-1` तो `-5=A(1+9)+0rArr A=-(1)/(2)`
`x=0` तो `0=9A+C" "rArr" "C=(9)/(2)`
`x^(2)` के गुणांकों को बराबर,
`A+B=0`
`rArr" "B=-A=(1)/(2)`
`thereforeint(5x)/((x+1)(x^(2)+9))dx=int((-(1)/(2)))/((x+1))dx+int((1)/(2)x+(9)/(2))/(x^(2)+9)dx`
`" "=-(1)/(2)int(1)/(x+1)dx+(1)/(2)int((x+9)/(x^(2)+9))dx`
`" "=-(1)/(2)log|x+1|+(1)/(2).(1)/(2)int(2x)/(x^(2)+9)dx+(9)/(2)int(1)/(x^(2)+9)dx`
`" "=-(1)/(2)log|x+1|+(1)/(4)log|x^(2)+9|+(9)/(2).(1)/(3)tan^(-1)((x)/(3))+C`
`" "=-(1)/(2)log|x+1|+(1)/(4)log|x^(2)+9|+(3)/(2)tan^(-1)((x)/(3))+C`


Discussion

No Comment Found