1.

6 boys and 6 girls are sitting in a row randomly. The probability that boys and girls sit alternately is(a) \(\frac{1}{36}\)(b) \(\frac{1}{462}\)(c) \(\frac{5}{126}\)(d) \(\frac{1}{231}\)

Answer»

(b) \(\frac{1}{462}\)

Let S be the sample space. 

Then, n(S) = Number of ways in which 6 boys and 6 girls can sit in a row = 12! 

Let E : Event of 6 girls and 6 boys sitting alternately. 

Then, the 6 girls and 6 boys can be arranged in alternate position in two ways. 

Ist way : We start with a boy. Then the arrangement is : B G    B G    B G    B G    B G    B G 

∴ Number of ways of arranging 6 boys in 6 places = 6! 

Number of ways of arranging 6 girls in 6 places = 6! 

∴ Number of ways of arranging 6 boys and 6 girls in alternate places = 6! × 6! 

Similarly, 

IInd way : Here we start with a girl. Then the arrangement is G B  G B    G B     G B     G B    G B 

∴ Number of ways of arranging 6 boys and 6 girls alternately this way 

= 6! × 6!

∴ n(E) = 6! × 6! + 6! × 6! 

= 2 × 6! × 6!

∴ n(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{2\times6!\times6!}{12!}\)

\(\frac{2\times6\times5\times4\times3\times2\times1}{12\times11\times10\times9\times8\times7}\) = \(\frac{1}{462}\).



Discussion

No Comment Found

Related InterviewSolutions