1.

If A and B are independent events., where P(A) = 0.3, P(B) = 0.6, then find: (i) P(A ∩ B) (ii) P(A ∪ \(\bar{B}\)) (iii) P(A ∪ B) (iv) P(\(\bar{A}\) ∩ \(\bar{B}\))

Answer»

Given 

P(A) = 0.3 

P(B) = 0.6 

(i) P(A ∩ B) = P(A) × P(B) 

= 0.3 × 0.6 

= 0.18 

(ii) P(A ∪ \(\bar{B}\)

= 0.3 – 0.18 

= 0.12 

(iii) P(A ∪ B) = p(A) + P(B) – P(A ∩ B) 

= 0.3 + 0.6 – 0.18 

= 0.90 – 0.18 

(iv) P(\(\bar{A}\)\(\bar{B}\)) = [1 – P(A)] [1 – P(B)] 

= [1 – 0.3] [1 – 0.6] 

= 0. 7 × 0.4 

= 0.28



Discussion

No Comment Found

Related InterviewSolutions