1.

A 1 L reaction vessel contained 1 mole each of solid `NH_(4)HS, NH_(30 and H_(2)S` at a temperature of `150^(@)C` . When the decomposition of `NH_(4)HS` was carried out , equilibrium is established `K_(p)` value at that temperature is 100. Calculate the equilibrium partial pressures at which 60 per cent dissociation of `NH_(4)HS` takes place at a lower temperature where `K_(p)` value is equal to 200 `"atm"^(2)` .

Answer» `NH_(4)HS_((s)) hArr NH_(3(g)) + H_(2)S_((g))`
`1-x" "1+x" "1+x`
`K_(p)=P_(NH_(3)) xx P_(H_(2)S)`
Total no. of moles at equilibrium `=(1+x)+(1+x)=2x+2`
Partial pressure=Mole fraction `xx`P
Mole fraction of `NH_(3)=(1+x)/(2x+2)`
`therefore ` Partial pressure of `NH_(3)=(1+x)/(2x+2)xxP`
Mole fraction of `H_(2)S=(1+x)/(2x+2)`
`K_(p)=((1+x)/(2x+x)xxP)((1+x)/(2x+2)xxP)`
`K_(p)=((1+x)^(2))/((2x+2)^(2))=100`
`((1+x)^(2)P^(2))/(4(1+x)^(2))=100 implies P^(2)=100xx4`
`P=sqrt(400)=200 ` atm
`P_(H_(2)S)=((1+x)20)/(2(x+1))=10`atm
`P_(NH_(3))=10` atm
per cent dissociation of `NH_(3) and H_(2)S` corresponds to moles each of `NH_(3) and H_(2)S`
`K_(p)=P_(NH_(3))xxP_(H_(2)S)`
`P_(NH_(3))=(1.6)/(3.2)xxp,P_(H_(2)S)=(1.6)/(3.2)xxP`
`K_(P)=((1.6)xxP^(2))/((3.2)^(2))=400`
`P^(2)=(200xx(3.2)^(2))/((1.6)^(2))=400`
`P=sqrt(400)=20` atm


Discussion

No Comment Found

Related InterviewSolutions