1.

( a - 2 b ) \left( a ^ { 2 } + 2 a b + 4 b ^ { 2 } \right) \left( a ^ { 3 } + 8 b ^ { 3 } \right)

Answer»

Simplifying (a + 2b)(a2 + -2ab + 4b2) = 0 Reorder the terms: (a + 2b)(-2ab + a2 + 4b2) = 0 Multiply (a + 2b) * (-2ab + a2 + 4b2) (a(-2ab + a2 + 4b2) + 2b * (-2ab + a2 + 4b2)) = 0 ((-2ab * a + a2 * a + 4b2 * a) + 2b * (-2ab + a2 + 4b2)) = 0 Reorder the terms: ((4ab2 + -2a2b + a3) + 2b * (-2ab + a2 + 4b2)) = 0 ((4ab2 + -2a2b + a3) + 2b * (-2ab + a2 + 4b2)) = 0 (4ab2 + -2a2b + a3 + (-2ab * 2b + a2 * 2b + 4b2 * 2b)) = 0 (4ab2 + -2a2b + a3 + (-4ab2 + 2a2b + 8b3)) = 0 Reorder the terms: (4ab2 + -4ab2 + -2a2b + 2a2b + a3 + 8b3) = 0 Combine like terms: 4ab2 + -4ab2 = 0 (0 + -2a2b + 2a2b + a3 + 8b3) = 0 (-2a2b + 2a2b + a3 + 8b3) = 0 Combine like terms: -2a2b + 2a2b = 0 (0 + a3 + 8b3) = 0 (a3 + 8b3) = 0 Solving a3 + 8b3 = 0 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '-8b3' to each side of the equation. a3 + 8b3 + -8b3 = 0 + -8b3 Combine like terms: 8b3 + -8b3 = 0 a3 + 0 = 0 + -8b3 a3 = 0 + -8b3 Remove the zero: a3 = -8b3 Simplifying a3 = -8b3 Combine like terms: -8b3 + 8b3 = 0 a3 + 8b3 = 0 The solution to this equation could not be determined.



Discussion

No Comment Found