InterviewSolution
Saved Bookmarks
| 1. |
A and B are positive acute angles satisfying the equations `3cos^(2)A+2cos^(2)B=4and (3sinA)/(sinB)=(2cosB)/(cosA),then` A+2B is equal toA. `(pi)/(3)`B. `(pi)/(2)`C. `(pi)/(6)`D. `(pi)/(4)` |
|
Answer» Correct Answer - B We have, `(3sinA)/(cosA)=(2cosB)/(cosA)` `implies(3sinA)/(cosA)=(2cosB sinB)/(cos^(2)A)` `impliestanA=1/3(sin2B)/(cos^(2)A)` `impliestanA=1/3tan2B.(cos2B)/(cos^(2)A)` `impliestanA=1/3(tan2B)/(cos^(2)A)(2cos^(2)B-1)` `impliestanA=1/3(tan2B)/(cos^(2)A)(4-3cos^(2)A-1)" "[{:(,because2cos^(2)B),(,=4-3cos^(2)A):}]` `impliestanA=tan2Btan^(2)A` `impliestanA tan2B=1` `impliestanA =cot2B` `impliestanA=tan((pi)/(2)-2B)` `impliesA=(pi)/(2)-2BimpliesA+2B=(pi)/(2)` |
|