1.

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that:(i) all are blue? (ii) at least one is green?

Answer»

Given: box containing 10 red, 20 blue and 30 green marbles.

Formula: P(E) = \(\frac{favorable\ outcomes}{total\ possible\ outcomes}\) 

five marbles are drawn from the given box, total possible outcomes are 60C5 therefore 

n(S) =  60C5  

(i) let E be the event of getting all blue balls

n(E)= 20C5

P(E) = \(\frac{n(E)}{n(S)}\)

P(E) = \(\frac{^{20}C_5}{^{60}C_5}\) = \(\frac{34}{11977}\) 

(ii) let E be the event of getting at least one green let E’ be the event of getting no green 

E’= {(5B) (1R 4B) (2R 3B) (3R 2B) (4R 1B) (5R)}

5B = 20C

1R 4B = 10C1 20C

2R 3B = 10C2 20C3 

3R 2B = 10C3 20C

4R 1B= 10C4 20C

5R= 10C5 

P(E) =1 - P(E’)

P(E’) = \(\frac{^{20}C_5+^{10}C_1^{20}C_4+^{10}C_2^{20}C_3+^{10}C_3^{20}C_2+^{10}C_4^{20}C_1+^{10}C_5}{^{60}C_5}\) 

  P(E’) = \(\frac{117}{4484}\)  

P(E) = 1 - \(\frac{117}{4484}\)  = \(\frac{4367}{4484}\) 



Discussion

No Comment Found

Related InterviewSolutions